

    
      
          
            
  
Overview

alternat is a collection of open-source toolsets with the ambition
of lowering the barrier of adopting accessibility solutions.
alternat helps to generate default intelligible alternative text for
images in websites.

Based on our experience, just adding alt-text is not a complete solution
but collecting images to be annotated is a big part of the task. Keeping
in mind above two requirements the current version of alternat offers
two features:


	Collect images from a website


	Generate recommended alternative text





Why alternat

70% of the sites are inaccessible and the inaccessibility is causing a
loss of 7 billion every year. In spite of availability of accessibility
standards for long and tools to point out where you are falling short,
there is a shortage of solutions which allow you to implement them with
ease. One of these areas is – Alternate Text (alt text).

The alt-text attribute of image tag in html is supposed to make images
in websites accessible. But in practice, one doesn’t see it meaningfully
implemented. Someone has to go through all the images in question and
craft a corresponding alt text based on context. The investment to do it
can become high and it could take time to author the content.

What if there is a library, which can be integrated in your projects,
that provides a recommended alt text for a given image, which can be
either passed on as is or as a recommendation to a reviewer?
alternat just does that.



	Installing alternat

	Running alternat in 5 minutes

	Understanding alternat

	Configuring alternat

	Using alternat

	Extending alternat

	Troubleshooting and FAQ

	Reference Guide











            

          

      

      

    

  

    
      
          
            
  
Installing alternat



	     Installing alternat macOS
	Install using pypi (macOS)

	Install from source (macOS)

	Installation using Anaconda python (macOS)

	Installation using Docker (macOS)





	     Installing alternat ubuntu
	Install using pypi (ubuntu)

	Install from source (ubuntu)

	Installation using Anaconda python (ubuntu)

	Installation using Docker (ubuntu)





	     Installing alternat windows
	Install using pypi (Windows)

	Install from source (Windows)

	Installation using Anaconda python (Windows)

	Installation using Docker (Windows)













            

          

      

      

    

  

    
      
          
            
  
Installing alternat macOS


Install using pypi (macOS)


	Install Node (>=v.12)


	Install Python (>=3.8)


	Install alternat:

pip install alternat







	Install apify

mkdir -p ~/.alternat && cd ~/.alternat && npm install apify && cd -












Install from source (macOS)


	Install git


	Install Node (>=v.12)


	Install Python (>=3.8)


	Open terminal and clone the repo:

git clone https://github.com/keplerlab/alternat.git







	Change the directory to the directory where you have cloned your repo

$cd path_to_the_folder_repo_cloned







	Install apify

mkdir -p ~/.alternat && cd ~/.alternat && npm install apify && cd -







	Install alternat using setup.py

python setup.py install












Installation using Anaconda python (macOS)


	Install git


	Install Node (>=v.12)


	Install Python (>=3.8)


	Open terminal and clone the repo:

git clone https://github.com/keplerlab/alternat.git







	Change the directory to the directory where you have cloned your repo

$cd path_to_the_folder_repo_cloned







	Create conda environment and install dependencies using
alternat.yml file

cd setup_scripts
conda env create --name alternat --file=alternat.yml







	Activate newly created environment:

conda activate alternat







	Install apify

mkdir -p ~/.alternat && cd ~/.alternat && npm install apify && cd -












Installation using Docker (macOS)


	Download and Install Docker Desktop for Mac using link: https://docs.docker.com/docker-for-mac/install/


	Clone this repo


	Change your directory to the cloned repo.


	Open terminal and run following commands:

cd <path-to-repo> //you need to be in your repo folder
docker-compose build







	Start docker container using this command:

docker-compose up







	In a new terminal window open terminal and enter into alternat docker container using command:

docker-compose exec alternat bash















            

          

      

      

    

  

    
      
          
            
  
Installing alternat ubuntu


Install using pypi (ubuntu)


	Install Node (>=v.12)


	Install Python (>=3.8)


	Install alternat:

pip install alternat









4. Install apify by first downloading install_apify_ubuntu.sh located at
setup_scripts folder in alternat Repo link [https://raw.githubusercontent.com/keplerlab/alternat/main/setup_scripts/install_apify_ubuntu.sh]  and then executing downloaded script

sudo sh install_apify_ubuntu.sh








Install from source (ubuntu)


	Install git


	Install Node (>=v.12)


	Install Python (>=3.8)


	Open terminal and clone the repo


git clone https://github.com/keplerlab/alternat.git






	Change the directory to the directory where you have cloned your repo

$cd path_to_the_folder_repo_cloned







	Install apify by executing given script

cd setup_scripts
sudo sh install_apify_ubuntu.sh







	Install alternat using setup.py

python setup.py install












Installation using Anaconda python (ubuntu)


	Install git


	Install Node (>=v.12)


	Install Python (>=3.8)


	Open terminal and clone the repo:

git clone https://github.com/keplerlab/alternat.git







	Change the directory to the directory where you have cloned your repo

$cd path_to_the_folder_repo_cloned







	Create conda environment and install dependencies using
alternat.yml file

cd setup_scripts
conda env create --name alternat --file=alternat.yml







	Activate newly created environment:

conda activate alternat







	Install apify by executing given script

cd setup_scripts
sudo sh install_apify_ubuntu.sh












Installation using Docker (ubuntu)


	Download and Install Docker Desktop for Mac using link: https://docs.docker.com/docker-for-mac/install/


	Clone this repo


	Change your directory to the cloned repo.


	Open terminal and run following commands:

cd <path-to-repo> //you need to be in your repo folder
docker-compose build







	Start docker container using this command:

docker-compose up







	In a new terminal window open terminal and enter into alternat docker container using command:

docker-compose exec alternat bash















            

          

      

      

    

  

    
      
          
            
  
Installing alternat windows


Install using pypi (Windows)


	Install Node (>=v.12)


	Install Python (>=3.8)




3. Install apify by first downloading install_from_pypi_windows.bat script
located at setup_scripts folder in alternat repo
[link](https://github.com/keplerlab/alternat/blob/main/setup_scripts/install_from_pypi_windows.bat)
and then executing downloaded script inside new windows powershell prompt:

.\install_from_pypi_windows.bat








Install from source (Windows)


	Install git


	Install Node (>=v.12)


	Install Python (>=3.8)


	Open terminal and clone the repo


git clone https://github.com/keplerlab/alternat.git






	Change the directory to the directory where you have cloned your repo

$cd path_to_the_folder_repo_cloned







	Install apify by executing given script inside windows powershell prompt:

cd setup_scripts
.\install_from_source_windows.bat












Installation using Anaconda python (Windows)


	Install git


	Install Node (>=v.12)


	Install Python (>=3.8)


	Open terminal and clone the repo inside windows powershell prompt:

git clone https://github.com/keplerlab/alternat.git







	Change the directory to the directory where you have cloned your repo

$cd path_to_the_folder_repo_cloned







	Create conda environment and install dependencies using
enviorment_windows.yml file

cd setup_scripts
conda env create --name alternat --file=enviorment_windows.yml







	Activate newly created environment:

conda activate alternat







	Install apify by executing given script inside windows powershell promp:

cd setup_scripts
.\install_apify_windows.bat












Installation using Docker (Windows)


	Download and Install Docker Desktop for Mac using link: https://docs.docker.com/docker-for-mac/install/


	Clone this repo


	Change your directory to the cloned repo.


	Open terminal and run following commands:

cd <path-to-repo> //you need to be in your repo folder
docker-compose build







	Start docker container using this command inside windows powershell or cmd promp:

docker-compose up







	In a new windows powershell or cmd window open terminal and enter into alternat docker container using command:

docker-compose exec alternat bash















            

          

      

      

    

  

    
      
          
            
  
Running alternat in 5 minutes

Alternat can run in the following mode:


	Application Mode: In application mode, users use Command Line Interface (CLI) to run the alternat.
We have created a sample app.py which will run the application via CLI command.


	Library Mode: In Library mode, users install alternat from pip (python package installer)
and can use in new or existing application via the library.


	Service Mode: In Service mode, REST API endpoint is exposed where a POST request can be submitted with a
JSON request to get the alt-text generated by alternat.




Below is the 5-minute guide to run alternat in the modes described above:


	Application Mode:


Collection:

Use case : collect and store images from a URL and store them in a folder

python app.py collect --url="https://page_url" --output-dir-path="sample/images/test"











Generation:

Use case:  generate alt-text for images in input folder and save result in a directory)

python app.py generate --input-dir-path="sample/images_with_text" --output-dir-path="results"











Use case: generate alt-text for single image and save result json in directory

python app.py generate --input-image-file-path="sample/images_with_text/sample1.png" --output-dir-path="results"
















	Library Mode:


Collection

# import the alternat library
from alternat.collection import Collector

# instantiate the collector
collector = Collector()

# Download images from url and saves image files in  output_dir_path
# Optional parameters, download_recursive if True crawls whole site mentioned in
# url by visiting each link recursively and downloads images
# collect_using_apify in future more crawlers will be supported this parameter
# ensures that apify crawler is used.
collector.process(url, output_dir_path, download_recursive, collect_using_apify)











Generation:

# import the alternat library
from alternat.generation import Generator

# instantiate the generator
generator = Generator()

# generate alt text from file (file at location sample/images_with_text/sample1.png
# and results saved at location folder results)
generator.generate_alt_text_from_file("sample/images_with_text/sample1.png", "results")

# OR

# generate alt text from base64 image
generator.generate_alt_text_from_base64(base64_image_string)
















	Service Mode:


In this mode, alternat exposes web API to generate alt-text for an image.
Alternat use python based API framework - fastAPI to create APIs. fastAPI comes
with a lightweight python server uvicorn which is used to expose the API. To start the server :

# Go to api folder
cd api

# run this command to start the service
uvicorn message_processor:app --port 8080 --host 0.0.0.0 --reload





The following web APIs are available:

# send a post request with base64 image to the Web Server
URL: http://localhost:8080/generate_text_base64
body: { base64: “base64_image_str”}

# send a post request with URL of the image to the Web Server
URL: http://localhost:8080/generate_text_url
body: { url: “url_of_the_image”}
















            

          

      

      

    

  

    
      
          
            
  
Understanding alternat

alternat features are centered around tasks. Following table
features break up across each task:









	Task

	Description

	Options

	Details





	Collection

	Scans the website and
downloads images

	Uses puppeteer to crawl
the web page.

	We are using apify -
A puppeteer scrapper
that crawls website
using the headless
chrome

https://apify.com




	Generate

	Generates alt-text using,
image captioning, OCR and
images labels

	Azure ML API

	Use azure CV API
for caption & OCR



	Google ML API based.

	Use Google vision
OCR and Image
Labelling



	Open source based.

	Use pytorch based
model for OCR
(EasyOCR) as well as
image captioning






Library offers the flexibility of choosing either or both tasks and selecting suitable options from each task.
Options are called drivers in alternat lingo.
So, if you want to use azure for alt-text generation then you initialize the generator with azure driver.
Same goes for google and “opensource” driver. Read the options as drivers.

There are few reasons for providing 3 drivers:


	Azure and google gives ready to use API, essentially lowering the barrier to get started.


	Most of the organizations don’t have the data to train their own model for OCR and image captioning.


	Open source is a free alternative but can be little less accurate in few situations.




The tradeoff here is between cost and accuracy.

The OCR function is responsible for reading text from images. However, most of the ML API for OCR would
treat single line as one text blob and might lead to unexpected out-of-order OCR text.
For this reason, alternat comes with its own clustering implementation for OCR.
alternat by default applies a clustering algorithm to create nearby
data as a single text blob and combines them into a single line thereby generating more
in-order human friendly OCR text.





            

          

      

      

    

  

    
      
          
            
  
Configuring alternat

Alternat can be configured at a global generator level or at the driver level with settings related to individual driver.
We discuss configuration for both the generator and the driver for Application as well as Library mode below:


Configure Generator

Following configuration parameters are available for generator:


	
	DEBUG:
	Setting the debug value to true will generate confidence level value for each of the OCR line
detected by the system. In the debug output, it gives the line height and its ratio compared to the image height.
This information is useful if you want to tune confidence level threshold value for drivers and
OCR line height to image height ratio for filtering out insignificant text in the image.







	
	ENABLE_OCR_CLUSTERING:
	Alternat comes with its own clustering rule
which clusters (blobs) OCR data to create final OCR text from it. This is enabled by
default and can be disabled by setting this value to false.















Application Mode:

You can find sample configuration for all the three drivers namely: opensource, azure, and google
under “path-to-repo/sample/generator_driver_conf/<drivername>.json”.
Inside the JSON file you will find the following configuration parameter:
GENERATOR: {DEBUG: false, ENABLE_OCR_CLUSTERING: true}

Here is an example to use the generator configuration for driver with name <drivername>:

python app.py generate --output-dir-path="results" --input-image-file-path="sample/images_with_text/sample1.png" --driver-config-file-path="sample/generator_driver_conf/<drivername>.json"





Where <drivername> is the name of the driver (opensource, azure or google)

Based on the setting for DEBUG and ENABLE_OCR_CLUSTERING in
the sample/generator_driver_conf/<drivername>.json file the above
command will generate the result and dump it inside “results” folder.







Library Mode:

In Library mode, you can directly interact with alternat library API to set the
generator level config via a json object. Following is an example that will walk you
through the same:

Once you have setup the alternat using “pip install alternat” you can open the python shell
and run these commands to set generator config

# import the Generator library
from alternat.generation import Generator

# instantiate the Generator for opensource driver (you can pass “azure” or
# “google” when instantiating to the let the library know the driver you want
# to use.
generator = Generator()

# get the current generator settings
# This will return the existing configuration
# {'DEBUG': False, 'ENABLE_OCR_CLUSTERING': True}
generator.get_config()

# set debug to true
generator_config = {“DEBUG”: True}
generator.set_config(generator_config)

# or disable OCR clustering
generator_config = {“ENABLE_OCR_CLUSTERING”: False}
generator.set_config(generator_config)

# or set values for both the parameters in one go
generator_config = {“DEBUG”: True, “ENABLE_OCR_CLUSTERING”: False}
generator.set_config(generator_config)

# run generator over an image and dump the output inside “results” folder
# this will run with DEBUG=true.
generator.generate_alt_text_from_file("sample/images_with_text/sample1.png", "results")








Configure Driver

Generator comes with 3 drivers:


	
	Opensource:
	Currently opensource drivers uses a pytorch based trained model for image captioning based on this repo [https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning]
It also uses EasyOCR for generating OCR text in case image have text in it.
This is the default driver for generator, does not require any kind of registration and is free to use.







	
	Azure:
	Uses Azure computer vision API to describe an image, generate OCR and also provide labels
to the image. To use this driver, you need to register for computer vision API from Microsoft
which will give you the SUBSCRIPTION_KEY and ENDPOINT URL to access the API.







	
	Google:
	Uses Google computer vision API to generate OCR and provide labels to the image.
To use this driver, you need to register for google computer vision API,
download the google cloud service credentials file on your system and set the path to it
in the driver configuration parameter ABSOLUTE_PATH_TO_CREDENTIAL_FILE (will be discussed below)















The following generator driver settings are available:


	
	CAPTION_CONFIDENCE_THRESHOLD:
	Decimal based threshold to filter out caption data.
For example, if you only want captions with confidence level above say 70%, then set this value to 0.70.
This is most useful when using “azure” as driver as Microsoft compute vision API has support for describing an image. This option is also used in opensource driver.







	
	OCR_CONFIDENCE_THRESHOLD:
	Decimal based threshold to filter out OCR data.
For example, if you want OCR text with confidence level about say 50%, then set this value to 0.50.







	
	LABEL_CONFIDENCE_THRESHOLD:
	Decimal based threshold to filter out label data.
For example, if you want labels with confidence level about say 80%, then set this value to 0.80.
This is useful when using google and azure driver as both the APIs have support for labelling image.







	
	OCR_HEIGHT_RATIO_TO_IMAGE_THRESHOLD:
	Decimal based threshold to filter out OCR text which does not
occupy a major portion of image and is practically irrelevant even if detected by the system.
This threshold considers the ratio of the height of the text and the image to decide whether the text
needs to be filtered out or not. For example, if you want OCR data only when the line height is greater
than let’s say 1.5% then set this value to 0.015 in the config.







	
	SUBSCRIPTION_KEY:
	This is the subscription key for azure computer vision API, and is only required
when using azure as the driver.







	
	ENDPOINT:
	This is the API endpoint URL for azure computer vision API, and is only required
when using azure as the driver.







	
	AZURE_RATE_LIMIT_ON:
	This enables rate limiting when using azure driver in free account.
Azure has a limit of 30 requests / minute in free tier account and when running alternat over a
set of images this limit can hit very quickly. Alternat avoids this by sleeping for 30 sec by default
and trying again. This setting is enabled by default. This setting is only required when using azure
as the driver.







	
	AZURE_RATE_LIMIT_TIME_IN_SEC:
	This is the rate limit time in sec. Alternat will sleep for these
many seconds (30 by default) when azure rate limiting is reached in free tier account.
To increase the sleep timer from 30 to say 40 seconds, set the value of this parameter to 40.
This setting is only required when using azure as the driver.







	
	ABSOLUTE_PATH_TO_CREDENTIAL_FILE:
	This setting holds the absolute path to the
google credentials file (required to access the Google cloud services and computer vision API).
This setting is only required when using google as the driver.















Let’s see how to configure the above parameters in both the application and library mode.

Application Mode:

You can find sample configuration for all the three drivers namely: opensource, azure, and google
under “path-to-repo/sample/generator_driver_conf/<drivername>.json”.
Inside the configuration file, you find all the parameters above with default values already set.
To change these values and run generator use the following command:

python app.py generate --output-dir-path="results" --input-image-file-path="sample/images_with_text/sample1.png" --driver-config-file-path="sample/generator_driver_conf/<drivername>.json"





Where <drivername> is the name of the driver (opensource, azure or google)







Library Mode:

Once you have setup the alternat using “pip install alternat” you can open the python shell
and run these commands to set generator config:

# import the Generator library
from alternat.generation import Generator

# instantiate the Generator for opensource driver (you can pass “azure” or
# “google” when instantiating to the let the library know the driver you want
# to use.

# for opensource
generator = Generator()

# or for azure
generator = Generator(“azure”)

# or for google
generator = Generator(“google”)

# get the current generator driver settings
# This will return the existing configuration based on the driver
generator.get_driver_config()

# set threshold value for caption, OCR and label
generator_driver_config = {"CAPTION_CONFIDENCE_THRESHOLD": 0.2, "OCR_CONFIDENCE_THRESHOLD": 0.3, "LABEL_CONFIDENCE_THRESHOLD":0.75}
generator. generator.set_driver_config (generator_driver_config)

# or set OCR_HEIGHT_RATIO_TO_IMAGE_THRESHOLD
generator_driver_config = {"OCR_HEIGHT_RATIO_TO_IMAGE_THRESHOLD":0.015}
generator. generator.set_driver_config (generator_driver_config)

# or set subscription key and endpoint URL for azure
generator_driver_config = {"SUBSCRIPTION_KEY": "yoursubscriptionkey", "ENDPOINT":"https://<ENTER_PROJECT_NAME>.cognitiveservices.azure.com/"}
generator. generator.set_driver_config (generator_driver_config)

# run generator over an image and dump the output inside “results” folder
# this will run with DEBUG=true.
generator.generate_alt_text_from_file("sample/images_with_text/sample1.png", "results")








Configure Web API

Web API use opensource driver by default. Both application mode and Web API internally rely
on the alternat library. To configure Web API for different driver and configuration the following changes are required:


	Navigate to api folder.


	Locate file message_processor.py. Here you will see the Generator being instantiated (just like in library mode).


	Use the samples from Library Mode section under Configure Driver to configure web API using alternat library.




Here is an example to say change the driver to azure. In message_processor.py,

# find the following statement
generator = Generator()

# for azure, change the statement to this
generator = Generator(“azure”)

# following statements change the driver specific configuration
# add this to set subscription key and endpoint URL for azure
generator_driver_config = {"SUBSCRIPTION_KEY": "yoursubscriptionkey", "ENDPOINT":"https://<ENTER_PROJECT_NAME>.cognitiveservices.azure.com/"}

# add this to update the threshold value for caption, OCR and label
generator_driver_config = {"CAPTION_CONFIDENCE_THRESHOLD": 0.2, "OCR_CONFIDENCE_THRESHOLD": 0.3, "LABEL_CONFIDENCE_THRESHOLD":0.75}

#  add this to update OCR_HEIGHT_RATIO_TO_IMAGE_THRESHOLD
generator_driver_config = {"OCR_HEIGHT_RATIO_TO_IMAGE_THRESHOLD":0.015}

# add this to set the configuration
generator.set_driver_config(generator_driver_config)











            

          

      

      

    

  

    
      
          
            
  
Using alternat


Application Mode via CLI (Command Line Interface)

Alternat comes with a python-based CLI app app.py which provides commands to run collection and generation task.
Below we give some example on how to use this app:

Collection:


	
	Collect and store images from a URL and store them in a folder sample/images/test
	python app.py collect --url="https://page_url" --output-dir-path="sample/images/test"











	
	Collect and store the images from a URL recursively and store them in a folder sample/images/test
	python app.py collect --url="https://page_url" --output-dir-path="sample/images/test" --download-recursively=true



















Generation


	
	Generate alt-text for the images in a directory name sample/images_with_text and save data in directory structure results:
	python app.py generate --input-dir-path="sample/images_with_text" --output-dir-path="results"











	
	Generate alt-text for a single image in a folder sample/images_with_text and save its result in a directory inside results:
	python app.py generate --input-image-file-path=./sample/images_with_text/sample1.png --output-dir-path=./results











	
	Generate alt-text based on user defined (custom) config for driver azure :
	python app.py generate --input-image-file-path=./sample/images/sample1.jpg --output-dir-path=./results --driver-config-file-path=./sample/generator_driver_conf/azure.json





The above command can be changed based on the driver by using the driver
sample files under sample/generator_driver_conf. For example, to use google driver
change the –driver-config-file-path to “sample/generator_driver_conf/google.json”.












Library Mode

With library mode, users can integrate alternat in their existing applications as well.
In library mode the package is installed via pip and can be import into python applications directly.
Below are some examples on using the library mode for collection and generation tasks:

Collection:

Download the image from a site given its URL to specified folder location:


# import the alternat library
from alternat.collection import Collector

# instantiate the collector
collector = Collector()

# Download images from url and saves image files in  output_dir_path
# Optional parameters, download_recursive if True crawls whole site mentioned in
# url by visiting each link recursively and downloads images
# collect_using_apify in future more crawlers will be supported this parameter
# ensures that apify crawler is used.
collector.process(url, output_dir_path, download_recursive, collect_using_apify














Generator:


	
	Generate alt-text for a single image in a folder “results” and save its result in a directory inside result/test:
	# import the Generator
from alternat.generation import Generator

# instantiate the generator (uses opensource driver by default)
generator = Generator()

# to use a specific driver pass the driver name when instantiating. For e.g, to use
# azure driver use
generator = Generator("azure")

# generate the alt text
generator.generate_alt_text_from_file("sample/images_with_text/sample1.png", "results")











	
	Generate alt-text for a single image in base64 image:
	# import the Generator
from alternat.generation import Generator

# instantiate the generator (uses opensource driver by default)
generator = Generator()

# generate the alt text
base64_image_str = "base64-image-data-here"
generator.generate_alt_text_from_base64(base64_image_str)
















Service Mode


In this mode, alternat exposes web API to generate alt-text for an image.
Alternat use python based API framework - fastAPI to create APIs. fastAPI comes
with a lightweight python server uvicorn which is used to expose the API. To start the server :

# Go to api folder
cd api

# run this command to start the service
uvicorn message_processor:app --port 8080 --host 0.0.0.0 --reload





The following web APIs are available:

# send a post request with base64 image to the Web Server
URL: http://localhost:8080/generate_text_base64
body: { base64: “base64_image_str”}

# send a post request with URL of the image to the Web Server
URL: http://localhost:8080/generate_text_url
body: { url: “url_of_the_image”}














            

          

      

      

    

  

    
      
          
            
  
Extending alternat


Adding new generator driver

To add a new driver, use the existing driver architecture. Alternat currently supports 3 drivers


	google


	azure


	opensource




Note:

All the drivers need to output JSON data and adhere to the schema here :
alternat/generation/data/analyzer_output.json. Failing to do so would impact proper functioning of the driver.

Follow the steps to add a new driver:


	Create a new folder with name custom inside alternat/generation


cd alternat/generation
mkdir custom










	Create the same file structure as in the existing drivers


# move inside **custom** folder
cd custom

# create the following files inside **custom** folder
# command will differ on windows shell
touch analyzer.py
touch config.py










	Copy paste the contents of config file from opensource/config.py


	Copy paste the contents of analyzer file from opensource/analyzer.py


	Edit the following methods in custom/analyzer.py to add your own functionality.



	open analyzer.py in custom/analyzer.py


	overwrite describe_image method to add your custom implementation of image captioning.


# overwrite this method to extract caption

  def describe_image(self, image: PIL_Image):
  """Describe image using your custom solution.

  :param image: PIL Image object
  :type image: PIL_Image
  """

      # add the extracted caption data here instead of empty dictionary
      # the data needs to adhere to the sample JSON data at alternat/data/analyzer_output.json
      self.data[self.actions.DESCRIBE] = {}










	overwrite the extract_labels method to add your custom implementation of getting label data.


def extract_labels(self, image: PIL_Image):
"""Extract labels of image using open source solution.

:param image: PIL Image object.
:type image: PIL_Image
"""

    # add the extracted label data here instead of empty dictionary
    # the data needs to adhere to the sample JSON data at alternat/data/analyzer_output.json
    self.data[self.actions.LABELS] = {}










	overwrite the ocr_analysis method to add your custom implementation for ocr extraction.


def ocr_analysis(self, image: PIL_Image):
"""Does OCR Analysis using EasyOCR.

:param image: PIL Image object.
:type image: PIL_Image
"""

    # add the ocr extracted data here instead of empty dictionary
    # the data needs to adhere to the sample JSON data at alternat/data/analyzer_output.json
    self.data[self.actions.OCR] = {}

















	Expose the driver to the generator library so it is available across the application. Following are the steps to the same:



	open alternat/generation/generator.py (This is the library for alternat)


	Import the Analyzer & Config class of your custom driver.


from alternat.generation.custom.config import Config as CustomAnalyzerConfig
from alternat.generation.custom.analyze import AnalyzeImage as CustomAnalyzer













	find the Drivers class and add your custom driver there.


class Drivers:
"""Driver name for alternat Library.
"""
    OPEN = "opensource"
    MICROSOFT = "azure"
    GOOGLE = "google"

    # custom driver added here
    CUSTOM = "custom"










	modify _set_current_driver method and add your custom driver in if-elif-else statements.


# TODO: This behavior will be changed later one so no method modification is required.

def _set_current_driver(self):
"""Sets the current driver internally within the application.

:raises InvalidGeneratorDriver: Driver name is invalid or not implemented.
"""
    if self.CURRENT_DRIVER == Drivers.OPEN:
        setattr(Config, Config.CURRENT_ANALYZER.__name__, OpenAnalyzer)
    elif self.CURRENT_DRIVER == Drivers.MICROSOFT:
        setattr(Config, Config.CURRENT_ANALYZER.__name__, MicrosoftAnalyzer)
    elif self.CURRENT_DRIVER == Drivers.GOOGLE:
        setattr(Config, Config.CURRENT_ANALYZER.__name__, GoogleAnalyzer)

    # custom driver added
    elif self.CURRENT_DRIVER == Drivers.CUSTOM:
        setattr(Config, Config.CURRENT_ANALYZER.__name__, CustomAnalyzer)
    else:
        raise InvalidGeneratorDriver(self.ALLOWED_DRIVERS)










	modify _get_current_driver method and add your custom driver in if-elif-else statements.


def _get_current_driver_conf_cls(self):
"""Retreives the driver configuration class based on the currently driver

:raises InvalidGeneratorDriver: Driver name is invalid or not implemented.
:return: [description]
:rtype: [type]
"""
    current_driver_cls = None
    if self.CURRENT_DRIVER == Drivers.OPEN:
        current_driver_cls = OpenAnalyzerConfig
    elif self.CURRENT_DRIVER == Drivers.MICROSOFT:
        current_driver_cls = MicrosoftAnalyzerConfig
    elif self.CURRENT_DRIVER == Drivers.GOOGLE:
        current_driver_cls = GoogleAnalyzerConfig

    # custom driver added
    elif self.CURRENT_DRIVER == Drivers.CUSTOM:
        current_driver_cls = CustomAnalyzerConfig
    else:
        raise InvalidGeneratorDriver(self.ALLOWED_DRIVERS)

    return current_driver_cls

















	The new custom driver will be available for use now.










            

          

      

      

    

  

    
      
          
            
  
Troubleshooting and FAQ

1. If you get error like Error: spawn wmic.exe ENOENT while running collect command (using apify) in alternat on Microsoft Windows
This indicates that the wmic utility’s directory is not found on your PATH.
Open the advanced System Properties window (you can open the System page
with Windows+Pause/Break) and on the Advanced tab, click Environment Variables.
In the section for system variables, find PATH (or any capitalization thereof).
Add this entry to it:

%SystemRoot%\System32\Wbem





Note that entries are delimited by semicolons.

2. In some cases with running collect command on windows you might get error:
Chrome is downloaded but fails to launch on Node.js 14
If you get an error that looks like this when trying to launch Chromium:

(node:15505) UnhandledPromiseRejectionWarning: Error: Failed to launch the browser process!
spawn /Users/…/node_modules/puppeteer/.local-chromium/mac-756035/chrome-mac/Chromium.app/Contents/MacOS/Chromium ENOENT
This means that the browser was downloaded but failed to be extracted correctly.
The most common cause is a bug in Node.js v14.0.0 which broke extract-zip, the module Puppeteer uses
to extract browser downloads into the right place. The bug was fixed in Node.js v14.1.0, so please make sure you’re running that version or higher.
Alternatively, if you cannot upgrade, you could downgrade to Node.js v12, but we recommend upgrading when possible.





            

          

      

      

    

  

    
      
          
            
  
Alternat Reference

The alternat reference guide will walk through the implementation for both
Generation and Collection, the alternat library, and the app.


Generation - Analyzer

Google Analyzer


	
class alternat.generation.google.analyze.AnalyzeImage

	Bases: alternat.generation.base.analyzer.AnalyzeImageBase

Google Analyzer driver class.


	Parameters

	AnalyzeImageBase ([type]) – Driver base class.






	
describe_image(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Describe image (used for captioning) - Not availble in Google Computer Vision API


	Parameters

	image (PIL_IMAGE) – [description]










	
extract_labels(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Extract labels of image using Google Computer Vision API.


	Parameters

	image (PIL_IMAGE) – PIL Image object.



	Raises

	Exception – Google Cloud specific error messages based on request.










	
handle(image_path: str = None, base64_image: str = None, actions: list = None) → dict

	Entry point for the driver. Implements all the action and generates data for rule engine.


	Parameters

	
	image_path (str, optional) – Path to image on disk, defaults to None


	base64_image (str, optional) – Base64 image string, defaults to None


	actions (list, optional) – list of actions to run, defaults to None (all actions execute)






	Returns

	[description]



	Return type

	dict










	
ocr_analysis(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Does OCR analysis using Google Computer Vision API. Also runs the alternat clustering rule
if app is configured for it.


	Parameters

	image (PIL_IMAGE) – PIL Image object.










	
set_environment_variables()

	Sets environment variable GOOGLE_APPLICATION_CREDENTIALS based on config.















Azure Analyzer


	
class alternat.generation.microsoft.analyze.AnalyzeImage

	Bases: alternat.generation.base.analyzer.AnalyzeImageBase

Azure / Microsoft Analyzer driver class.


	Parameters

	AnalyzeImageBase ([type]) – Driver base class.






	
describe_image(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Describe image using Azure Vision API.


	Parameters

	image (PIL_Image) – PIL Image object










	
extract_labels(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Extract labels of image using Azure Vision API.


	Parameters

	image (PIL_Image) – PIL Image object.










	
handle(image_path: str = None, base64_image: str = None, actions: list = None) → dict

	Entry point for the driver. Implements all the action and generates data for rule engine.


	Parameters

	
	image_path (str, optional) – Path to image on disk, defaults to None


	base64_image (str, optional) – Base64 image string, defaults to None


	actions (list, optional) – list of actions to run, defaults to None (all actions execute)






	Returns

	[description]



	Return type

	dict










	
is_clean(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>) → bool

	Check if the image has proper resolution, and is clean.

:param image:PIL Image object.
:type image: PIL_Image
:return: [description]
:rtype: bool






	
modifyBoundingBoxData(bounding_box: list)

	Transform bounding box data as per the convention. Azure API return bounding box info in the format
[left, top, right, top, right, bottom, left, bottom] which is transformed to format
[{x: left, y: top}, {x: right, y: top}, {x: right, y: bottom}, {x: left, y: bototm}].


	Parameters

	bounding_box (list) – Bounding box data form Azure API.



	Returns

	[description]



	Return type

	[type]










	
ocr_analysis(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Does OCR Analysis using Azure Vision API.


	Parameters

	image (PIL_Image) – PIL Image object.










	
resize_image(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Resize image (maintaining aspect ratio) if width / height > 5000 pixels (API constrain from Azure)


	Parameters

	image (PIL_Image) – [description]



















Opensource Analyzer


	
class alternat.generation.opensource.analyze.AnalyzeImage

	Bases: alternat.generation.base.analyzer.AnalyzeImageBase

Opensource driver class.


	Parameters

	AnalyzeImageBase ([type]) – Driver base class.






	
describe_image(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Describe image using open source solution. Not implemented right now.


	Parameters

	image (PIL_Image) – PIL Image object










	
extract_labels(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Extract labels of image using open source solution. Not implemented righ now.


	Parameters

	image (PIL_Image) – PIL Image object.










	
handle(image_path: str = None, base64_image: str = None, actions: list = None) → dict

	Entry point for the driver. Implements all the action and generates data for rule engine.


	Parameters

	
	image_path (str, optional) – Path to image on disk, defaults to None


	base64_image (str, optional) – Base64 image string, defaults to None


	actions (list, optional) – list of actions to run, defaults to None (all actions execute)






	Returns

	[description]



	Return type

	dict










	
modifyBoundingBoxData(bounding_box: list)

	Transform bounding box data as per the convention. EasyOCR return bounding box info in the format
[left, top, right, top, right, bottom, left, bottom] which is transformed to format
[{x: left, y: top}, {x: right, y: top}, {x: right, y: bottom}, {x: left, y: bototm}].


	Parameters

	bounding_box (list) – Bounding box data form EasyOCR.



	Returns

	[description]



	Return type

	[type]










	
ocr_analysis(image: <module 'PIL.Image' from '/home/docs/checkouts/readthedocs.org/user_builds/alternat/envs/v0.1.4/lib/python3.8/site-packages/PIL/Image.py'>)

	Does OCR Analysis using EasyOCR.


	Parameters

	image (PIL_Image) – PIL Image object.
















Generation - Rule Engine

OCR Rule


	
class alternat.generation.rules.ocr_handler.OCRDataHandler(input_data, confidence_threshold: float = None, ocr_filter_threshold: float = None)

	Bases: alternat.generation.base.action_data_handler.ActionDataHandler

Rule for processing OCR data from driver.


	Parameters

	ActionDataHandler ([type]) – Base class for rule.





Initialize the handler with input data and confidence threshold (if available)


	Parameters

	
	input_data ([type]) – Data from driver.


	confidence_threshold (float, optional) – Confidence threshold to filter OCR with low threshold, defaults to None (Driver config default)


	ocr_filter_threshold (float, optional) – Confidence threshold to filter OCR data based on line height ratio to image height.









	
apply(interim_result: dict) → dict

	Process intermin result from previous rules in the chain and run OCR rule.


	Parameters

	interim_result (dict) – Intermediate results from previous rules in the chain.



	Returns

	[description]



	Return type

	dict










	
has_data() → bool

	Checks whethere OCR data is avalible in the input data.


	Returns

	[description]



	Return type

	bool










	
process_ocr() → dict

	Process the OCR data from the driver and filter it on the basis of
line confidence threshold value and the ratio of line height to image height. 
Based on the configuration also invokes alternat clustering implementation (default to True)


	Returns

	[description]



	Return type

	dict



















Caption Rule


	
class alternat.generation.rules.caption_handler.CaptionDataHandler(input_data: dict, confidence_threshold: float = None)

	Bases: alternat.generation.base.action_data_handler.ActionDataHandler

Rule for processing caption data from driver.


	Parameters

	ActionDataHandler ([type]) – Base class for rule.





Initialize the handler with input data and confidence threshold (if available)


	Parameters

	
	input_data (dict) – Data from driver.


	confidence_threshold (float, optional) – Confidence threshold to filter captions with low threshold, defaults to None (Driver config default)









	
apply(interim_result: dict) → dict

	Process intermin result from previous rules in the chain and run caption rule.


	Parameters

	interim_result (dict) – Intermediate results from previous rules in the chain.



	Returns

	[description]



	Return type

	dict










	
has_data() → bool

	Checks whethere caption data is avalible in the input data.


	Returns

	[description]



	Return type

	bool



















Label Rule


	
class alternat.generation.rules.label_handler.LabelDataHandler(input_data, confidence_threshold: float = None)

	Bases: alternat.generation.base.action_data_handler.ActionDataHandler

Rule for processing label data from driver.


	Parameters

	ActionDataHandler ([type]) – Base class for rule.





Initialize the handler with input data and confidence threshold (if available)


	Parameters

	
	input_data ([type]) – Data from driver.


	confidence_threshold (float, optional) – Confidence threshold to filter labels with low threshold, defaults to None (Driver config default)









	
apply(interim_result: dict) → dict

	Process intermin result from previous rules in the chain and run label rule.


	Parameters

	interim_result (dict) – Intermediate results from previous rules in the chain.



	Returns

	[description]



	Return type

	dict










	
has_data() → bool

	Checks whethere label data is avalible in the input data.


	Returns

	[description]



	Return type

	bool
















Library


	
class alternat.generation.generator.Drivers

	Bases: object

Driver name for alternat Library.


	
GOOGLE = 'google'

	




	
MICROSOFT = 'azure'

	




	
OPEN = 'opensource'

	








	
class alternat.generation.generator.Generator(driver_name: str = None)

	Bases: object

Generator class to implement alternat Library.


	Raises

	
	InvalidGeneratorDriver – Driver Invalid


	InvalidGeneratorDriver – Driver Invalid


	InvalidGeneratorDriver – Driver Invalid


	OutputDirPathNotGiven – Output director path is not given.






	Returns

	[description]



	Return type

	[type]





Initializes generator with driver to use.


	Parameters

	driver_name (str, optional) – Name of the driver], defaults to None (opensource)



	Raises

	InvalidGeneratorDriver – Driver name is invalid or not implemented.






	
ALLOWED_DRIVERS = ['opensource', 'azure', 'google']

	




	
DEFAULT_DRIVER = 'opensource'

	




	
generate_alt_text_from_base64(base64_image: str)

	Generates alt-text from base64 image string.


	Parameters

	base64_image (str) – base64 image string



	Returns

	[description]



	Return type

	[type]










	
generate_alt_text_from_file(input_image_path: str, output_dir_path: str)

	Generates alt-text from file on disk.


	Parameters

	
	input_image_path (str) – Path to image to be processed.


	output_dir_path (str) – Path to directory where the results needs to be saved.






	Returns

	[description]



	Return type

	[type]










	
get_config()

	Get the generator level config in the form of JSON.


	Returns

	[description]



	Return type

	[type]










	
get_current_driver()

	Get the current driver.


	Returns

	[description]



	Return type

	[type]










	
get_driver_config()

	Get the driver config in the form of JSON. Retreives public members [name: value] pair
from the driver config class.


	Returns

	[description]



	Return type

	[type]










	
set_config(conf)

	Sets the generator level configuration parameters passed via JSON.


	Parameters

	conf ([type]) – Generator configuration parameters with values.










	
set_driver_config(conf: dict)

	Sets the driver config parameters using the JSON passed. There is one-to-one 
mapping between key in json and driver class public members.


	Parameters

	conf (dict) – Configuration JSON to set the driver configuration.














	
class alternat.collection.collector.Collector

	Bases: object


	
process(url: str, output_dir_path: str, download_recursive: bool = False, collect_using_apify: bool = False)

	Collects image from the url into the output directory


	Parameters

	
	url (str) – [description]


	output_dir_path (str) – [description]


	download_recursive (bool, optional) – [description], defaults to False


	collect_using_apify (bool, optional) – [description], defaults to False






















            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Overview
        


        		
          Installing alternat
          
            		
                   Installing alternat macOS
              
                		
                  Install using pypi (macOS)
                


                		
                  Install from source (macOS)
                


                		
                  Installation using Anaconda python (macOS)
                


                		
                  Installation using Docker (macOS)
                


              


            


            		
                   Installing alternat ubuntu
              
                		
                  Install using pypi (ubuntu)
                


                		
                  Install from source (ubuntu)
                


                		
                  Installation using Anaconda python (ubuntu)
                


                		
                  Installation using Docker (ubuntu)
                


              


            


            		
                   Installing alternat windows
              
                		
                  Install using pypi (Windows)
                


                		
                  Install from source (Windows)
                


                		
                  Installation using Anaconda python (Windows)
                


                		
                  Installation using Docker (Windows)
                


              


            


          


        


        		
          Running alternat in 5 minutes
        


        		
          Understanding alternat
        


        		
          Configuring alternat
          
            		
              Configure Generator
            


            		
              Configure Driver
            


            		
              Configure Web API
            


          


        


        		
          Using alternat
          
            		
              Application Mode via CLI (Command Line Interface)
            


            		
              Library Mode
            


            		
              Service Mode
            


          


        


        		
          Extending alternat
          
            		
              Adding new generator driver
            


          


        


        		
          Troubleshooting and FAQ
        


        		
          Reference Guide
          
            		
              Generation - Analyzer
            


            		
              Generation - Rule Engine
            


            		
              Library
            


          


        


      


    
  

_static/file.png





_static/logo.png
alternat





_static/minus.png





_static/plus.png





